

Lamu Coal Power Plant

Noise Impact Assessment Report

Prepared for: Kurrent Technologies Ltd

Report Ref: J3092

Date: May 2015

Disclaimer

WardKarlson Consulting Ltd. accepts no responsibility to any parties whatsoever, following the issue of the Document, for any matters arising outside the agreed scope of the work. This Document is issued in confidence to the Client and WardKarlson Consulting Ltd. has no responsibility to any third parties to whom this Document may be circulated, in part or in full, and any such parties rely on the contents of the report solely at their own risk.

The copyright on this document is the property of WardKarlson Consulting Ltd. This document is supplied by WardKarlson Consulting Ltd. on the express terms that it is to be treated as confidential and that it may not be copied, used or disclosed to others for any purpose except as authorised in writing by WardKarlson Consulting Ltd.

Report Approval & Revision Record

	Project	Lamu Coal Power Plant		
	Document Title	Noise Impact Assessment Report		
	Client	Kurrent Technologies Ltd		
	Report Number	J3092		
Rev	Date	Prepared	Reviewed	Approved
00	May 2015	Douglas Tilbury Environmental Engineer	Marc Blanché Principal Consultant	Richard Palmer Principal Consultant

Table of Contents

1	INTRODUCTION	5
	1.1 PROJECT BACKGROUND	5
	1.2 AIMS AND OBJECTIVES	5
2	PROJECT DESCRIPTION	6
3	PROJECT NOISE STANDARDS AND IMPACT SIGNIFICANCE	. 10
	3.1 PROJECT STANDARDS	10
	3.1.1 International Standards	. 10
	3.2 CALCULATION OF CONSTRUCTION NOISE.	. 12
	3.3 SIGNIFICANCE CRITERIA FOR IMPACT ASSESSMENT	. 12
4	EXISTING NOISE CONDITIONS	. 14
	4.1 BASELINE NOISE SURVEY	. 14
	4.2 Noise Sensitive Receptors	. 14
F	CONSTRUCTION NOISE IMPACT ASSESSMENT	20
5		. 20
	5.1 Equipment Numbers	. 20
	5.2 IMPACT ASSESSMENT SUMMARY	. 22
	5.2.1 Expected Construction Noise Levels	. 22
	5.2.2 Cumulative Impact Assessment	. 23
	3.5 MITIGATION OF CONSTRUCTION NOISE	. 24
6	PROJECT FACILITIES OPERATIONAL NOISE IMPACT ASSESSMENT	. 27
	6.1 NOISE MODEL	. 27
	6.2 PROPAGATION OF SOUND	. 27
	6.3 METEOROLOGICAL AND GROUND CONDITIONS	. 28
	6.5 MODELLED EQUIPMENT	. 20
	6.6 PREDICTED NOISE LEVELS	. 30
	6.6.1 Boundary Noise Levels	. 31
	6.6.2 Existing Noise Sensitive Receptors	. 32
	6.6.3 New Noise Sensitive Receptors	. 33
	6.7 MITIGATION OF OPERATIONAL NOISE	. 35
	6.7.1 Boundary Noise Levels and Existing Noise Sensitive Receptors	. 35
	6.7.2 New Noise Sensitive Receptors	. 35
7	CONCLUSION	. 37
	7.1 CONSTRUCTION PHASE	. 37
	7.2 OPERATIONAL NOISE IMPACT ASSESSMENT	. 37
	7.2.1 Boundary Noise Levels	. 37
	7.2.2 Existing Noise Sensitive Receptors	. 38
	7.2.3 New Noise Sensitive Receptors	. 38
8	REFERENCES	. 39
9	GLOSSARY	. 40

APPENDIX A: SAMPLE CONSTRUCTION NOISE IMPACT ASSESSMENT TABLES	41
APPENDIX B: ASSUMED FACILITIES NOISE EQUIPMENT LOG	44
APPENDIX C: NOISE CONTOUR MAPS	54

List of Tables

Table 3-1 - Maximum Permissible Noise Levels for General Environment (IFC, 2007) 10
Table 3-2 - Indoor Ambient Noise Levels for Dwellings (Table 4: BS8233: 2014)11
Table 3-3 - Noise Impact Assessment Criteria [5] 12
Table 4-1 - Baseline Noise Levels and Receptor Descriptions 15
Table 4-2 - Receptor Descriptions of Accommodation Area Receptors 17
Table 4-3 - Selected NSRs for Noise Impact Assessment
Table 5-1 - Assumed Construction Equipment Inventory
Table 5-2 - Construction Noise Levels as a function of Distance (Project in Isolation)22
Table 5-3 - Construction Noise Levels at Sensitive Receptors 23
Table 6-1 - Project Facilities and Associated Equipment
Table 6-2 - Predicted Project Site Boundary Noise Levels – Normal Operation
Table 6-3 - Predicted Project Site Boundary Noise Levels – Emergency Scenario
Table 6-4 - Assessment of Noise Levels at Existing NSRs under Normal Operating Conditions 32
Table 6-5 - Assessment of Noise Levels at Existing NSRs under Emergency Operating Conditions
Table 6-6 - Assessment of Noise Levels at New NSRs under Normal Operating Conditions 34
Table 6-7 - Assessment of Noise Levels at New NSRs under Emergency Operating Conditions34
Table 6-8 - Typical Noise Insulation Factors for Different Types of Window (BRE Digest 379 (1993) [10])
Table 6-9 - Proposed Mitigation Measures for Inclusion in Design of Accommodation Areas36

List of Figures

Figure 2-1 - Project location (regional context)	6
Figure 2-2 - Project Location (local context)	7
Figure 2-3 - General Plant Layout	8
Figure 2-4 – Ash Yards in Relation to Main Areas	9

Figure 4-1 - Locations of Ambient Noise Monitoring Locations (All Locations)
Figure 4-2- Locations of Ambient Noise Monitoring Locations (up to 1.5 km from Project Boundary
Figure 4-3 - Locations of Accommodation Areas in Close Proximity to the Plant
Figure 4-4 - Locations of Selected Receptors for Assessment

Acronyms

BRE	Building Research Establishment
BS	British Standard
CEMP	Construction Environmental Management Plan
dB	decibels
dB(A)	decibels 'A' weighted
DEFRA	Department of Environment, Food and Rural Affairs (UK)
EHS	Environmental, Health and Safety
ESIA	Environmental and Social Impact Assessment
GIIP	Good International Industry Practice
HSE	Health, Safety and Environment
IEMA	Institute of Environmental Management and Assessment
IFC	International Finance Corporation
IoA	Institute of Acoustics
ISO	International Standards Organisation
KTL	Kurrent Technologies Ltd.
kV	Kilovolts
mm / m / km	millimetres / metres / kilometres
MW	Megawatts
NIA	Noise Impact Assessment
NSR	Noise Sensitive Receptor
SWRO	Salt Water Reverse Osmosis
tph	Tonnes per hour
USGS	United States Geological Survey
WHO	World Health Organisation
WKC	WardKarlson Consulting Pty Ltd

1 Introduction

1.1 Project Background

WardKarlson Consulting Ltd (WKC) has been commissioned by Kurrent Technologies Limited (KTL) to conduct a noise impact assessment (NIA) for the proposed Lamu Coal Power Plant (hereafter referred to as the 'Project'), located within the Lamu region of northern Kenya.

1.2 Aims and Objectives

This report, forming part of the Environmental and Social Impact Assessment (ESIA) focuses on the noise associated with Project, using design data specifications and experience of similar projects. The key objective of this assessment is to evaluate the potential impact of the project activities on the local noise climate from:

- Construction noise associated with the Project;
- Normal operating conditions of the Project; and,
- Emergency operating conditions of the Project.

Potential impacts from the Project have been modelled using SoundPLAN Version 7.3 and compared against International Finance Corporation (IFC) General Environmental, Health and Safety (EHS) Guidelines [1], whilst construction noise impacts have been assessed using British Standard BS5228 [2].

2 **Project Description**

The proposed Lamu Coal Power Plant will be located on the north side of the New Lamu Port area, Manda Bay situated in Lamu County, northern Kenya (Figure 2-1 and Figure 2-2).

The project will consist of 3x350 MW coal units to be built on a tract of land identified and reserved for its construction by the Government of Kenya. The general arrangement plan of the plant is divided into four main areas (Figure 2-3).

- 1) Coal yard and coal handling facilities;
- 2) The main power block;
- 3) 400 kV substation; and,
- 4) The administration buildings and canteen, and construction/ operating quarters.

Figure 2-3 - General Plant Layout

The ash storage areas are shown in Figure 2-4.

3 Project Noise Standards and Impact Significance

This section presents the relevant international standards and guidelines, and project specifications applicable to this assessment.

3.1 Project Standards

3.1.1 International Standards

The international standards/guidelines that have been applied to the Project in the noise impact assessment are the IFC General EHS Guidelines [1]. The EHS Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP). When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These General EHS Guidelines are designed to be used together with the relevant Industry Sector EHS Guidelines which provide guidance to users on EHS issues in specific industry sectors.

IFC refers to guidance from the World Health Organisation (WHO) on establishing community noise levels. The guidance indicate that noise levels at receptors should not exceed the levels presented in Table 3-1, or result in a maximum increase in background levels of 3 dB(A) at the nearest receptor location off-site [1].

Classification of Receptor	Noise level Guidelines (L _{Aeq} one hour (dB(A))		
	Day (7 a.m. – 10 p.m.)	Night (10 p.m. – 7 a.m.)	
Residential, Institutional or Educational	55	45	
Industrial or Commercial	70	70	

Table 3-1 - Maximum Permissible Noise Levels for General Environment (IFC, 2007)

In the case of exceedances in allowable noise levels at the external façade of a building, internal noise levels are semi-quantitatively assessed by applying typical noise mitigation reductions from windows. Windows are identified as the least sound-insulating component of typical building façades. The resulting internal noise levels are assessed against BS8233:2014 'Guidance on Sound Insulation and Noise Reduction for Buildings' [3] which is based on existing guidelines issued by the WHO and assume normal diurnal fluctuations in external noise. These recommended indoor ambient noise levels are detailed in Table 3-2 below.

Table 3-2 - Indoor	Ambiont	Noisol	avals for	Dwollings	(Table 1.	B68333.	2014)
1 able 3-2 - Illuoor	Amplent	NOISE L	evels IOI	Dweinings	(I able 4.	D30233.	2014)

		Noise level Guidelines		
Activity	Location	(L _{Aeq} over the time period under assessment (dB(A))		
		Daytime (07:00 to 23:00)	Night time (23:00 to 07:00)	
Resting	Living room	35	-	
Dining	Dining room /area	40	-	
Sleeping (Daytime resting)	Bedroom	35	30	

Although the definition of the time periods for day and night time do not correlate with the IFC Guidelines, BS8233:2014 is used to semi-quantitatively assess the impacts at residential dwellings [3].

3.2 Calculation of Construction Noise

British Standard BS5228:2008 'Noise and Vibration Control on Construction and Open Sites' [2] provides a calculation method, practical information on noise reduction measures, and promotes 'Best Practice Means' approach to control noise emissions during construction.

The noise emission data presented in BS5228 [2] does not reflect the latest advancements in plant noise emissions control. Therefore, whilst the calculations in this assessment have been carried out according to the BS5228 methodology, several of the input data for construction plant noise levels have been taken from the United Kingdom's Department for Environment, Food and Rural Affairs (DEFRA) report 'Update of Noise Database for Prediction of Noise on Construction and Open Sites' [4].

Due to the temporary and transient nature of construction noise, a Project threshold value has been set at 10 dB(A) higher than the IFC limit (i.e. 55 dB(A) + 10 dB(A) = 65 dB(A)). This margin has been applied on the basis of typical assessment criteria outlined in BS5228 [2]. The criteria indicates that a 10 dB(A) exceedance of statutory background noise limits as being the point at which the project is liable for costs of temporary relocation of inhabitants affected by the construction noise.

A conservative approach has been taken for this assessment and only maximum levels are assessed. Therefore, even if the assessment should indicate an exceedance of the 65 dB(A) construction noise threshold, it is expected that this noise level will be temporary and transient and therefore not classified as background noise.

3.3 Significance Criteria for Impact Assessment

The criteria for the assessment of noise changes arising at noise sensitive receptors (NSRs) from the operation of the power plant have been adapted from the joint Institute of Environmental Management and Assessment (IEMA) and the Institute of Acoustics (IoA) guidelines for noise and vibration impact assessment categories and are given in Table 3-3 [5].

Impact Category	Noise Change Band	Description	
No Effect	0 dB(A)	Not discernible	
Negligible	0.1 – 2.9 dB(A)	Not discernible – Marginal changes in noise levels of less than 3 dB(in residential areas, or outdoor recreational areas in close proximity t main roads.	
Minor Negative	3 to 4.9 dB(A)	Noticeable adverse – Noise levels of 3-5 dB(A) in residential areas, or at outdoor recreational areas.	
Moderate Negative	5 to <10 dB(A)	Considerable adverse – Noise levels warrant mitigation of residential properties on a widespread basis in a community, or for outdoor recreation areas close to main roads.	

 Table 3-3 - Noise Impact Assessment Criteria [5]

Impact Category	Noise Change Band	Description
Major Negative	10 dB(A) or more	Major adverse – Noise increases to a level where continued residential use of individual properties is inappropriate, or where the use of a community building could be inappropriate.

4 Existing Noise Conditions

4.1 Baseline Noise Survey

An ambient noise survey was conducted for the Project for period of 6 days from 10th January 2015 to the 15th of January 2015. A total of 11 daytime noise measurements were taken at locations along the Project boundary and various locations extending more than 1.5 km from the Project boundary.

The selected sound level meter automatically logs environmental noise measurement parameters including L_{Aeq} , L_{Amax} , L_{A10} and L_{A90} , definitions of which are presented in the Glossary. A summary of the measurement locations are detailed in Noise Sensitive Receptors

4.2 Noise Sensitive Receptors

Eleven (11) locations were included in the baseline survey carried in January 2015. These locations and receptors are detailed in Figure 4-1, Figure 4-2 and Table 4-1 below:

Figure 4-1 - Locations of Ambient Noise Monitoring Locations (All Locations)

No	Description	Coordinatos	Noise Level L _{Aeq} (dB(A))			Ambient Noise Description	
NO.	Description	Coordinates	L_{Aeq}	L _{A90}	L _{A10}	L _{Amax}	Ambient Noise Description
1	Near beam AP4 (homestead)	S02°05'19.6" E040°53'30.0"	53.0	31.9	54.2	85.8	(No record)
2	Near beam AP1 (homestead)	S02°05'09.3" E040°54'25.0"	47.3	39.0	50.9	68.6	(No record)
3	Between beam AP1 & AP4	S02°05'26.4" E040°54'41.0"	43.8	39.8	46.3	58.8	Waves from the ocean
4	Between beam AP1 & AP2	S02°04'52.8" E040°54'02.4"	49.4	44.2	51.7	66.9	General domestic noise
5	Between beam AP1 & AP3	S02°05'15.5" E040°53'18.3"	44.1	31.9	43.8	60.2	Birds
6	Bargoni village	S02°02'49.6" E040°47'10.0"	42.2	35.0	42.6	64.5	Noise from the mosque, traffic and domestic noise

Table 4 4	Pacalina	Noico		and	Deeer	stor D) o o o riu	ationa
1 abie 4-1	- Daseillie	NOISE	Leveis	anu	Recep		rescrip	JUOHS

No	Description	Coordinatos	Noise Level L _{Aeq} (dB(A))			Ambient Noise Description	
NO.	Description	Coordinates	L _{Aeq}	L _{A90}	L _{A10}	L _{Amax}	Ambient Noise Description
7	Village between Bargoni & Bobo	S02°05'05.6" E040°46'51.4"	43.2	37.3	46.9	54.2	General public noise
8	Patte Jetty	S02°06'38.0" E040°58'21.0"	58.9	55.4	61.0	71.2	Traffic (motor vehicles and motorcycles), boats, ocean waves and general public noise
9	Resort (beach area)	S02°04'24.8" E040°58'30.1"	46.9	44.3	48.9	52.1	Ocean breeze
10	Hindi Mosque	S02°10'47.8" E040°48'59.1"	51.0	46.4	53.2	65.1	Traffic along Hindi road
11	Jipe (homestead)	S02°11'14.9" E040°49'57.4"	47.5	43.0	50.2	59.5	Domestic noise from chicken/ hens and dog barking

The measurement of baseline noise is used to determine the ambient noise climate of the Project area. Due to the assessment criteria adopted for this study which rely on the incremental change between ambient noise and modelled cumulative noise levels, it is considered most conservative to adopt the lowest L_{Aeq} value measured on the site boundary (record No. 3 - Between beam AP1 & AP4) for use as the baseline noise level for any other locations on the boundary for which no measurement was collected, which in this case is equal to 43.8 dB(A).

In addition, a number of key locations within the worker camp and accommodation area have been considered and are shown in Figure 4-3 and Table 4-2 below:

Table 4-2 - Receptor Descriptions of Accommodation Area Receptors

No.	Description	Coordinates
1	Dormitory (Northwest corper)	S02°06'8.15"
1		E040°54'26.10"
2	Dermiten (Nerthaget corner)	S02°06'8.15"
	Domitory (Northeast corner)	E040°54'27.31"
2		S02°06'10.10"
3	worker camp (Northwest comer)	E040°54'30.97"
4	Marker Comm (Nertheast commu)	S02°06'10.12"
4	worker Camp (Northeast corner)	E040°54'36.10"
_		S02°06'23.61"
5	worker Camp (Southwest corner)	E040°54'31.11"

Based on initial screening, a number of NSRs were selected for assessment in this study as shown in Figure 4-4 and Table 4-3. This selection has been based on the location/receptors proximity to the Project facility, and sensitivity to the construction and operational phases of the Project.

Table 4-3	 Selected 	NSRs for	Noise Impa	ct Assessment
-----------	------------------------------	----------	------------	---------------

Noise Se	nsitive Receptor and Description	IFC receptor classification	Ambient Day/Night time Noise Limits ¹ dB(A)	Baseline Day Time Ambient Noise dB(A)
NSR1 ²	Near beam AP4 (homestead)	Residential	55 / 45	53.0

Noise Sensitive Receptor and Description		IFC receptor classification	Ambient Day/Night time Noise Limits ¹ dB(A)	Baseline Day Time Ambient Noise dB(A)
NSR2 ²	Near beam AP1 (homestead)	Residential	55 / 45	47.3
NSR3 ²	Between beam AP1 & AP4	Residential	55 / 45	43.8
NSR4 ²	Between beam AP1 & AP2	Residential	55 / 45	49.4
NSR5 ²	Between beam AP1 & AP3	Residential	55 / 45	44.1
NSR6 ³	Dormitory (Northwest corner)	Residential	55 / 45	43.8
NSR7 ³	Dormitory (Northeast corner)	Residential	55 / 45	43.8
NSR8 ³	Worker Camp (Northwest corner)	Residential	55 / 45	43.8
NSR9 ³	Worker Camp (Northeast corner)	Residential	55 / 45	43.8
NSR10 ³	Worker Camp (Southwest corner)	Residential	55 / 45	43.8

Note 1: Standards in accordance with IFC EHS guidelines noise limits [1]

Note 2: NSRs 1 to 5 are classified as existing receptors

Note 3: NSRs 6 to 10 are classified as new receptors associated with worker accommodation areas

NSRs 1 to 5 are existing receptors and are representative of the impact to the existing community. NSRs 6 to 10 are considered representative of locations which will be constructed for the purpose of accommodation of workers. As these NSRs fall within the boundary of the Project site, the land use classification is technically industrial, however, given that they are designed to accommodate workers, they have been classified as residential receptors under the IFC guidelines [1]. Note however, that due to the change in land-use from being unoccupied, the impact assessment criteria outline in Table 3-3 is not used. In the case of new NSRs, assessment is done using a direct comparison against the IFC standard, and not the change in noise from the existing ambient noise levels.

5 Construction Noise Impact Assessment

An assessment of predicted noise emissions from construction activities at the sensitive receptor points associated with the Project (Table 4-3) was carried out in accordance with BS5228 [2]. As stated in Section 3.3, a construction noise threshold of 65 dB(A) was applied at all receptors.

5.1 Equipment Numbers

Precise details of the construction schedule or equipment requirements are not yet finalised; however, the assessment was conducted based on assumed impact durations and equipment numbers for the construction of the Project Facilities.

BS5228 [2] gives reference noise levels for typical construction equipment items. The noise levels are defined as the equivalent sound pressure level (Lp) at a distance of 10m from the item in question.

Using the sound pressure levels of the various items of equipment it is possible to calculate the cumulative noise level of all the various units running simultaneously (by logarithmic addition) and then to determine the resultant noise level at any distance from the construction, based on the principles of the inverse square law for noise propagation over distance.

The inverse square law:

$$L_{P2} = L_{P1} - 20 \log \left(\frac{R_2}{R_1} \right)$$

Where L_{P1} is the sound pressure level at the reference distance from the construction equipment (in this case 10 m);

 L_{P2} is the sound pressure level at the sensitive receptor;

 R_1 is the reference distance of where the sound pressure level of the equipment item(s) was referenced (in this case 10 m); and,

 R_2 is the distance between the construction activities and the sensitive receptor.

The assumed construction equipment list for the various phases of construction is detailed in Table 5-1.

Table 5-1 - Assumed Construction Equipment Inventory

Plant/Activity	Number of units	Lp @ 10m	Reference ¹						
I. Earth Work Equipment									
Backhoe Excavator	6	78	C.2 No. 3						
Dozer	4	79	C.2 No. 11						
Loader	10	68	C.2 No. 8						
II. Transportation Equipment									
Autodumper (Large)	20	76	C.4 No. 4						

Plant/Activity	Number of units	Lp @ 10m	Reference ¹
Autodumper (Small)	10	78	C.4 No. 7
Water Tank Truck	4	76	C.4 No. 76
III. Concrete and mortar Equipment			
Concrete Mixing Plant	2	80	C.4 No. 20
Concrete batching machine	2	N/A	N/A
Material loader (a)	4	68	C.2 No. 8
Material loader (b)	2	68	C.2 No. 8
Concrete mixing transportation cart	10	76	C.4 No. 22
Concrete pump truck	2	77	C.4 No.21
Concrete transport pump	4	67	C.4 No. 24
Mortar mixer	8	61	C.4 No. 23
IV. Lifting Equipment			
Track type crane (a)	1	67	C.3 No. 28
Track type crane (b)	1	67	C.4 No. 46
Truck crane	2	70	C.4 No. 43
V. Special Equipment			
Piling machine	10	82	C.3 No. 15
Construction elevator	1	66	C.4 No. 62
Diesel generator	2	74	C.4 No. 84
Water purification equipment	3	N/A	N/A
VI. Other Equipment			
Steel processing equipment	6	N/A	N/A
Woodwork equipment	4	N/A	N/A
Electric slag pressure welding machine	6	73	C.3 No. 31
Flash butt-welding machine	4	73	C.3 No. 31
Electric welder	10	73	C.3 No. 31
Electric winch (a)	4	N/A	N/A
Electric winch (b)	4	N/A	N/A
Impact hammer	6	82	C.3 No. 15
Hand drill	10	76	CONCAWE CNP 064 [6]
Sand-wheel grinder	6	75	C.4 No. 94
Angle abrader	10	75	C.4 No. 94
Bench grinder	4	80	C.4 No. 93
Electrohydraulic pipe bender	2	N/A	N/A
Pneumatic drill(including hammer)	20	82	C.3 No. 15

Plant/Activity	Number of units	Lp @ 10m	Reference ¹
Submerged pump	20	62	C.8 No. 23
Sewage pump	8	68	C.4 No.88
Vertical tamping machine	2	82	C.3 No. 15
Frog hammer	6	82	C.3 No. 15

Note 1: Noise levels of construction equipment as per BS5228 estimates, DEFRA update and vendor data for equipment of similar capacity and size (Tables C.1 to C.12) unless stated otherwise [2] [4].

5.2 Impact Assessment Summary

Noise emissions from construction activities have been estimated for the 6 groupings of equipment items outlined in Table 5-1 in accordance with the methodology presented in BS5228:2008 [2]. Due to the scale of the construction site, it is not possible to identify an exact location from which to measure the edge of the construction site. As a result, construction noise is assessed in terms of a general noise contour and reported as such in Table 5-2 below.

In addition, NSRs 1 to 6 have been assessed for cumulative construction noise impacts based on the measured baseline noise levels at these locations as well as the measured distances between the NSRs and the edge of the nearest edge of the main plant area.

To represent a reasonable worst case scenario, each single incidence of each item in the construction equipment detailed in Table 5-1 has been assumed to be operating concurrently at a single location. It is assumed that construction activity will only take place during the day and thus no assessment is made against a night time standard. For details of the Construction assessment, see Appendix A for sample tables.

The assessment is divided into the various stages of construction as defined by the construction equipment inventory in Table 5-1.

The construction noise threshold (due to its temporary nature) is assessed as 65 dB(A) as per Section 3.2.

Distance	Construction Noise Level (dB(A))								
(m)	I	II	Ш	IV	v	VI			
10	81.7	81.5	81.8	73.0	82.7	89.5			
20	75.7	75.5	75.8	67.0	76.7	83.5			
30	72.2	72.0	72.3	63.5	73.2	80.0			
40	69.7	69.5	69.8	61.0	70.7	77.5			
50	62.7	62.6	62.9	54.0	63.8	70.6			
75	59.2	59.0	59.3	50.5	60.2	67.0			
100	56.7	56.5	56.8	48.0	57.7	64.5			
150	53.2	53.0	53.3	44.5	54.2	61.0			

5.2.1 Expected Construction Noise Levels

Table 5-2 - Construction Noise Levels as a function of Distance (Project in Isolation)

Distance	Construction Noise Level (dB(A))								
(m)	I	Ш	III	IV	v	VI			
200	50.7	50.5	50.8	42.0	51.7	58.5			
300	47.2	47.0	47.3	38.5	48.2	55.0			

When the project is considered in isolation, the construction noise limit of 65 dB(A) is expected to be exceeded for all types of construction activity. It should be noted however, that in all cases, the exceedance of the limit is expected to be limited to within a radius of approximately 50 - 75 m from the edge of the construction site. A review of aerial photographs (Google Earth) of the Project area reveal no identifiable receptors within this radius and it is thus considered unlikely that significant negative impacts will be experienced as a result of construction noise.

5.2.2 Cumulative Impact Assessment

The cumulative noise contribution due to construction activity (only Group VI which is considered as 'worst case') at the identified NSRs (NSR 1 to 5) is detailed in Table 5-3 below and evaluated against the impact criteria detailed in Table 3-3. This includes the addition of baseline data to the predicted construction noise levels.

The distances from the edge of the construction site to each of the receptors has been measured using Google Earth and is measured as the shortest possible distance between them. The resultant maximum noise level caused by construction noise at each receptor is then calculated based on the methodology outlined in BS5228 [2].

Recepto r	Distance from boundary (m)	Constructio n Noise Contribution (Group IV) (dB(A))	Baseline Noise Level (dB(A))	Total Noise Level (dB(A))	Maximu m Change in Noise Level at NSR (dB(A))	Exceedance of Constructio n Noise Limit?	Impact Severity
NSR1	1 550	40.7	53.0	53.2	0.2	No	Negligible
NSR2	1 100	43.7	47.3	48.9	1.6	No	Negligible
NSR3	710	47.5	43.8	49.0	5.2	No	Moderate
NSR4	1 640	40.3	49.4	49.9	0.5	No	Negligible
NSR5	1 940	38.8	44.1	45.2	1.1	No	Negligible

Table 5-3 - Construction Noise Levels at Sensitive Receptors

When considering construction noise, moderate negative impacts are expected at NSR3 as per the assessment criteria outlined in Table 3-3 [5]. Other NSR's around the Project site are not expected to be impacted by construction noise, as the predicted levels are well below the construction noise threshold of 65 dB(A). In addition the construction phase will include the

construction of a 2.5 m perimeter wall, which will act as additional screening during the later construction phases.

The construction worker camp locations are not known at this stage of the design process but can be expected to experience negative impacts (noise levels between 65 and 75 dB(A)) during day time construction activity. During these times (day time hours) however, the residents of the worker camps will be involved in the construction activities and are not likely to be significantly impacted by the noise experienced at the worker camps.

5.3 Mitigation of Construction Noise

The noise predictions presented in Table 5-3 are for activities with all assumed construction equipment (Table 5-1) operating concurrently with no site hoarding acting as a noise control measure, therefore this can be considered a 'worst case' scenario.

Noise and vibration from construction activities can be controlled through the Health, Safety and Environmental (HSE) Management Plans, such as the Construction Environmental Management Plan (CEMP). The following mitigation measures are proposed for the subject construction works:

- Prioritise building the perimeter walls around the facility;
- Where reasonable and feasible, the proponent will apply best practice noise mitigation measures including:
 - Maximising the offset distance between noisy equipment items and residential receptors;
 - Avoiding the coincidence of noisy equipment working simultaneously close together when adjacent to sensitive receptors;
 - o Orienting equipment away from noise sensitive receptors; and,
 - Carrying out loading and unloading away from noise sensitive areas.
- Site inductions should cover the importance of noise control and available noise reduction measures;
- Construction contractors should be required to use equipment that is in good working order and that meets current best practice noise emission levels. This should be achieved by making it a component of contractual agreements with the construction contractions;
- Community liaison would form a critical element in the management of the impacts. If
 provided with adequate warning, affected sensitive receptors are sometimes willing to
 accept excessive noise for a short period of time. Designation of a community liaison
 officer who will be able to deal with the concerns of residents and establishment of a

complaint response programme can enable the identification and resolution of any noise related concerns at an early stage;

- Noise monitoring should be undertaken in order to determine the construction noise emission levels and to aid the selection of additional noise controls where necessary. Additional noise controls such as portable screening would be employed if monitoring indicates the need or in response to concerns;
- Where limit values are exceeded immediate appropriate action will be undertaken for example reducing hours of heavy construction works or replacing tooling techniques;
- As far reasonably practicable sources of significant noise should be enclosed. The extent to which this can be done depends on the nature of the machines to be enclosed and their ventilations requirements;
- Minimise reversing of equipment to prevent nuisance caused by reversing alarms;
- Driver practices when approaching and leaving the site should minimise noise emissions created through activities such as unnecessary acceleration and breaking squeal;
- All mobile or fixed noise-producing equipment used on the project, where regulated for noise output by a local, state, or federal agency, shall comply with such regulation while in the course of project activity;
- Electrically-powered equipment instead of pneumatic or internal combustion powered equipment shall be used, where feasible;
- Material stockpiles and mobile equipment staging, parking, and maintenance areas shall be located as far as practicable from noise-sensitive receptors;
- Construction site and haul-road speed limits shall be established and enforced during the construction period;
- The use of noise-producing signals, including horns, whistles, alarms, and bells shall be for safety warning purposes only;
- The on-site construction supervisor shall have the responsibility and authority to receive and resolve noise complaints. A clear appeal process to the Owner shall be established prior to construction commencement that will allow for resolution of noise problems that cannot be immediately solved by the site supervisor;
- The contractor shall develop a project noise control plan, which shall have been approved and implemented prior to commencement of any construction activity;
- Contract incentives may be offered to the construction contractor to minimise or eliminate noise complaints resulting from project activities where project construction would result in significant noise impacts;

- The emplacement of berms or erection of temporary sound wall barriers (site hoarding) will be considered where project activity is unavoidably close to noise-sensitive receptors; and,
- Planting of trees and shrubbery while useful for visual screening is not an effective noise control mechanism and is not considered a noise control or mitigation measure for noise impacts.

6 Project Facilities Operational Noise Impact Assessment

6.1 Noise Model

In order to estimate the operational noise levels, the internationally recognised noise modelling software SoundPLAN 7.3 has been utilised.

The propagation methodology adopted within the SoundPLAN model was the International Organisation for Standardisation (ISO) 9613 'Acoustics – Attenuation of Sound during Propagation Outdoors' (ISO, 1996) [7]. This document can be referred to for an in depth description of the methodology SoundPLAN utilises for attenuation of sound and propagation outdoors.

ISO 9613 specifies an engineering method for calculating the attenuation of sound during propagation outdoors in order to predict the levels of environmental noise at a distance from a variety of sources [7]. The method predicts the equivalent continuous A-weighted sound pressure level (L_{Aeq}) under meteorological conditions favourable to propagation from sources of known sound emission. The source (or sources) may be moving or stationary and takes account of the following physical effects:

- Geometrical divergence;
- Atmospheric absorption;
- Ground effect;
- Reflection from surfaces; and,
- Screening by obstacles.

This method is applicable in practice to a great variety of noise sources and environments. It is applicable, directly or indirectly, to most situations concerning: industrial noise sources, road or rail traffic, construction activities, and many other ground-based noise sources.

6.2 **Propagation of Sound**

The variables which affect sound propagation over ground away from a source have been the subject of much detailed investigation over the years. The principal factors influencing sound attenuation with distance from the source are:

- Geometrical spreading (this is the standard spherical wave divergence term which gives 6 dB reduction in noise level for each doubling of distance from point source e.g. small motor, 3 dB for a line source e.g. piping) [8];
- Source directivity;
- Atmospheric (molecular) absorption;
- Ground effects (different for hard/soft ground, and type of ground cover);

- Atmospheric wind temperature gradients (refraction);
- Source height;
- Atmospheric turbulence; and,
- Barrier effects (diffraction).

The total attenuation due to all these factors except geometrical spreading and directivity is generally referred to as 'excess attenuation', and will vary with frequency. Because of these effects, a significant noise source may not be significant at, and beyond, the boundary and vice-versa. For example a noise source dominated by low frequency noise (with a long wave length) is likely to travel a greater distance under the same excess attenuation factors to that of a noise source dominated with high frequency noise (with a shorter wavelength).

6.3 Meteorological and Ground Conditions

The most influential environmental condition on noise propagation is distance, the greater the distance between the noise source and the receiver the greater the noise reduction achieved. Typically for stationary sources (such as those associated with a coal power station), a reduction of 6 dB(A) per doubling of distance is considered the norm [8].

The type of ground cover also influences noise propagation. Soft ground such as sand or agricultural land absorbs sound energy shortening the propagation path whereas hard ground such as compact soil or tarmac reflects the sound energy and thereby noise travels further. It has been assumed for this assessment that the ground cover will be relatively hard with an associated absorption coefficient of 0.2.

For noise propagation over short distances climatic conditions do not have a significant effect, however over longer distance over 50 m wind becomes more influential. Downwind the level may increase by a few dB, depending on wind speed whereas on the upwind or side-wind the level can drop by 10 dB.

Temperature gradients create effects similar to those of wind gradients, except that they are uniform in all directions from the source. On a sunny day with no wind, temperature decreases with altitude, giving a noise shadow. (The result is the noise is taken up and away from the source and the ground). On a clear night temperature may increase with altitude (temperature inversion) focusing sound towards the ground surface.

6.4 Modelled Equipment

In the absence of detailed design data, equipment has been integrated into the noise model as either a point, area or block source, depending on the size and function of the item of equipment. In the absence of vendor noise data, all equipment has been modelled at the occupational noise threshold sound pressure level (Lp) of 85 dB(A) at a distance of 1 metre from any equipment façade.

The sound power level data has been estimated based on the sound pressure level data and approximate equipment sizes estimated from data provided by the project engineers or based on approximate dimensions illustrated on Project plot plans and facility layout drawings.

Full details of equipment modelled is detailed in Appendix B.

-			
Noisy Equipment	No. of Identical Equipment Items	L _P (dB(A)) @ 1m	Operating Conditions (Normal / Emergency)
Turbine	3	85	Normal
Motor driven variable speed feed water pump	3	85	Emergency
Condensate pump	6	85	Emergency
Turbine driven feed water pump	6	85	Normal
Turbine driven feed water booster pump	6	85	Normal
Feed water pump turbine	6	85	Normal
Closed cycle cooling water pump	6	85	Normal
Vacuum pump	6	85	Normal
Lube oil transportation pump	3	85	Normal
Boiler ¹	3	85	Normal
Primary air fan ¹	6	85	Normal
Forced draft fan ¹	6	85	Normal
Sealing air fan ¹	6	85	Normal
Scan air cooling fan ¹	6	85	Normal
Slag crusher ¹	3	85	Normal
Fluidising Air Blower ¹	4	85	Emergency
Air Preheater	6	85	Normal
LDO supplying pump	5	85	Emergency
LDO unloading pump	2	85	Normal
Bulldozer	3	85	Normal
Loader	2	85	Normal
Vibrating feeder	2	85	Normal
Shaking-striking device	20	85	Normal
Roller screen	2	85	Normal
Ring hammer crusher	2	85	Normal
Blowdown pump	6	85	Normal
Induced drift fan	6	85	Normal
Pulveriser	15	85	Normal
Waste water pump	6	85	Normal
Screw air compressor	9	85	Normal
Fluidising air blower of ash silo	4	85	Normal

Table 6-1 - Project Facilities and Associated Equipment

Noisy Equipment	No. of Identical Equipment Items	L _P (dB(A)) @ 1m	Operating Conditions (Normal / Emergency)
Fluidising air blower of ash hopper	4	85	Normal
UF produced water pump	3	85	Normal
HP feed water pump of SWRO	3	85	Normal
Feed up pump of RO	2	85	Normal
HP feed pump of RO	2	85	Normal
Feed up pump of ion-exchange system	2	85	Normal
Demineralized water pump	3	85	Emergency
Roots blower	4	85	Normal
Waste water pump	2	85	Emergency
Circulating water pump (CWP)	6	85	Normal
Washing pump for traveling screen	2	85	Normal
Drainage pump	2	85	Normal
Seawater booster pump	3	85	Normal
Cooling water pump for CWP motors	2	85	Normal
Make up water pump for D.M plant	4	85	Normal
Potable water pump for power plant	2	85	Normal
Reuse water pump	2	85	Emergency
Reuse water pump	2	85	Normal
Coal wastewater booster pump	2	85	Normal
Electric motor driven main pump	1	85	Normal
Diesel engine driven pump	1	85	Normal
Low-voltage dry-type transformer	31	85	Normal

Note 1: Due to limited detail of the locations of these equipment items within the boiler halls, all items indicated have been included as a single block source with dimensions as per the plot plan and a height of 8 metres.

6.5 Modelling Assumptions

The following assumptions have been made for the modelling assessment, and wherever possible, a conservative approach has been taken:

- It has been assumed that all continuous noise sources operate 24 hours per day;
- There is a 2,5m perimeter wall around the entire project site;
- Equipment height has been based upon the plant layout plot plans and knowledge of similar projects;
- Noise sources have been modelled as point, area or blocks (as described earlier);

- The model does not incorporate features which might provide partial screening (e.g., columns, pipe racks, structural steelwork, and small equipment);
- Ground absorption has been modelled as relatively hard ground (having an absorption coefficient of 0.2) to maintain a conservative assessment; and,
- Reasonable worst case meteorological conditions have been applied, i.e. steady wind conditions blowing in each direction.
- The model does not include noise from pipework or valves.
- A digital ground map was generated using terrain data received from the United States Geological Survey (USGS) Global Data Explorer [9] on a resolution of approximately 30 m.

6.6 Predicted Noise Levels

6.6.1 Boundary Noise Levels

Equipment has been assumed to be designed to comply with the work area noise limits, however an assessment of the noise impact at the site boundary and beyond has been conducted to determine if the Project facilities will meet the specified daytime boundary noise level of 70 dB(A).

Table 6-2 presents the predicted cumulative noise levels under normal operating conditions at the site boundary. Similarly, Table 6-3 shows the cumulative noise levels under emergency operating conditions at the site boundaries.

Under normal conditions equipment noise is predicted to be localised to the work areas. The cumulative noise (based on the logarithmic addition of baseline ambient and project noise levels) generated by the Project facilities is expected to diminish towards the site boundary with maximum noise levels predicted to range from 45.3 dB(A) on the northern boundary to 55.5 dB(A) on the eastern boundary.

	Maximum Cumulative Boundary	Boundary Noise Limit: IFC Guidelines			
Boundary	Noise Level under Normal Operating Conditions (dB(A))	Daytime Noise Limit (dB(A))	Night Time Noise Limit (dB(A))		
North	45.3	70	70		
East	55.5	70	70		
West	54.4	70	70		
South	48.9	70	70		

Table 6-2 - Predicted Pro	iect Site Boundary	V Noise I evels -	Normal Operation
Table 0-2 - Freuitleu Fro	ject Sile Doulluary		

Based on the assessment results, the boundary noise levels are not anticipated to exceed the IFC daytime and night time guideline noise limit [1].

Table 6-3 shows the cumulative noise levels under emergency operating conditions at the site boundaries.

Table 6-3 - Predicted Project Site Boundary Noise Levels – Emergency Scenario

Boundary	Maximum Cumulative Boundary Noise Level under Emergency Operating Conditions (dB(A))
North	45.4
East	55.8
West	54.6
South	49.1

6.6.2 Existing Noise Sensitive Receptors

Noise emissions from normal and emergency operational activities have been estimated for the five existing NSRs identified in the area of the Project facilities as shown in Section 0.

According to the IFC standards, the daytime and night time noise limits at the residential NSRs are 55 dB(A) and 45 dB(A) respectively.

The cumulative noise level at each receptor is calculated by logarithmic addition of the Project noise (modelled noise level) to the ambient (measured baseline) noise level at each location.

The noise levels at NSRs due to normal operation of the Project in isolation at the five sensitive receptors are detailed in Table 6-4 and assessed against the IFC daytime and night time noise standards. Similarly, Table 6-5 shows the assessment of noise levels under emergency operating conditions at each of the five existing NSRs.

Table 6-4 - Assessment of Noise Levels at Existing NSRs under Normal Operating Conditions

Receptor	Project Noise Contribution at Receptor	Baseline Noise Level at Receptor	Cumulative Noise Level at Receptor	Change in Noise Level at Receptor	Applica Noise (dB	able IFC E Limit S(A))	Impact Rating
	(dB(A))	(dB(A))	(dB(A))	(dB(A))	Day	Night	
NSR1	40.7	53.0	53.2	0.2	55	45	Negligible
NSR2	44.3	47.3	49.1	1.8	55	45	Negligible
NSR3	47.4	43.8	49.0	5.2	55	45	Moderate
NSR4	40.7	49.4	49.9	0.5	55	45	Negligible
NSR5	38.6	44.1	45.2	1.1	55	45	Negligible

Table 6-5 - Assessment of Noise Levels at Existing NSRs under Emergency Operating Conditions

Receptor	Project Noise Contribution at Receptor	Baseline Noise Level at Receptor	Cumulative Noise Level at Receptor	Change in Noise Level at Receptor	Applica Noise (dB	able IFC Limit (A))	Impact Rating
	(dB(A))	(dB(A))	(dB(A))	(dB(A))	Day	Night	
NSR1	40.9	53.0	53.3	0.3	55	45	Negligible
NSR2	44.4	47.3	49.1	1.8	55	45	Negligible
NSR3	47.5	43.8	49.0	5.2	55	45	Moderate
NSR4	41.0	49.4	50.0	0.6	55	45	Negligible
NSR5	38.8	44.1	45.2	1.1	55	45	Negligible

As detailed in Table 6-4 and Table 6-5, the cumulative noise levels (Project noise contribution with ambient noise) have been compared against the IFC noise limits for daytime and night time periods [1]. The results indicate no exceedances of daytime noise limits for any of the NSRs, however all five NSRs are expected to experience exceedances of the night time limit of 45 dB(A).

It should be noted that it is arguable that the noise limits are conservative with regards to the existing ambient noise levels, as most ambient noise levels already exceed the applicable night time limit.

In terms of contextualising background noise levels in excess of the standards, the IFC Guidelines [1] states that the contribution of operational noise should not result in an increase of background noise levels by more than 3 dB(A). Based on this requirement, the cumulative noise level should not be 3 dB(A) greater than the ambient noise level.

Although NSR 3 does experience an increase in noise level of more than 3 dB(A), the ambient measured noise level is below the day and night time IFC noise limit [1] and therefore the Project does not cause violation of this guideline. It should be noted at this point that the Project contribution to this exceedance is below the daytime noise limit and only 2.5 dB(A) above the night time IFC limit.

6.6.3 New Noise Sensitive Receptors

Noise emissions from normal and emergency operational activities have been estimated for the five new NSRs identified in the area of the Project facilities as shown in Section 0.

According to the IFC standards, the daytime and night time noise limits at the residential NSRs are 55 dB(A) and 45 dB(A) respectively.

The noise levels at NSRs due to normal operation of the Project in isolation at the five sensitive receptors are detailed in Table 6-6 and assessed against the IFC daytime and night time noise standards [1]. Similarly, Table 6-7 shows the assessment of noise levels under emergency operating conditions at each of the five new NSRs.

Table 6-6 - Assessment of Noise Levels at New NSRs under Normal Operating Conditions

Receptor	Project Noise Level at Receptor	Applicable IFC Noise Limit (dB(A))		Exceedance of Noise (dB	Applicable IFC Limit (A))
	((((((((Day	Night	Day	Night
NSR6	65.5	55	45	10.5	20.5
NSR7	64.1	55	45	9.1	19.1
NSR8	60.2	55	45	5.2	15.2
NSR9	52.1	55	45	N/A	7.1
NSR10	53.2	55	45	N/A	8.2

Table 6-7 - Assessment of Noise Levels at New NSRs under Emergency Operating Conditions

Receptor	Project Noise Level at Receptor (dB(A))		Applicable IFC Noise Limit (dB(A))		Applicable IFC Limit (A))
		Day	Night	Day	Night
NSR6	65.9	55	45	10.9	20.9
NSR7	64.6	55	45	9.6	19.6
NSR8	60.5	55	45	5.5	15.5
NSR9	52.2	55	45	N/A	7.2
NSR10	53.6	55	45	N/A	8.6

As detailed in Table 6-6 and Table 6-7, the Project noise levels have been compared against the IFC noise limits for daytime and night time periods. The results indicate exceedances of daytime noise limits for NSR 6, 7 and 8; while all five NSRs are expected to experience exceedances of the night time limit of 45 dB(A).

It should be noted that it is arguable that the noise limits are conservative with regards to the fact that the classification of the NSRs is technically an industrial area; however, given that these areas are designed to accommodate workers, it was considered more conservative to assess the noise levels at these locations against the residential standards.

Noise contour maps have been generated from the modelling assessment and are shown in Appendix C. Various mitigation measures to address these exceedances are outlined in Section 6.7.

6.7 Mitigation of Operational Noise

6.7.1 Boundary Noise Levels and Existing Noise Sensitive Receptors

Noise levels at the boundary and existing NSRs can be partially controlled through proper maintenance of continuous noise sources such as pumps, fans, compressors and turbines. It is essential that equipment is built to comply with the specification of 85 dB(A) at 1 m.

However, as this assessment conservatively assumes 85 dB(A) noise levels at 1 m from the façade of all sources, the noise levels at various receptors (NSRs and boundary) around the Project site are considered a worst case scenario and may change based on the final design.

Further mitigation measures for the noise levels produced by each equipment item should be investigated based on the final design of the complete facility.

6.7.2 New Noise Sensitive Receptors

The elevated noise levels expected to occur at NSRs 6 to 10 are likely unavoidable due to the relatively close proximity of the worker accommodation areas (receptors) to the power block (noisiest part of the plant). Of primary concern at these receptors is the indoor noise level in order to allow for adequate sleeping conditions in accordance with the BS8233:2014 as outlined in Table 3-2 [3].

The Building Research Establishment (BRE) Digest 379 (1993) [10] outlines typical noise insulation rating for different types of windows as shown in Table 6-8.

Table 6-8 - Typical Noise Insulation Factors for Different Types of Window (BRE Digest 379 (1993) [10])

Type of Window	Single Number Insulation Rating	Description			
	R _w (dB)				
Open Window	± 10	Small casement window open to 45° for ventilation			
Single Glazing	22 – 30	4 mm single glazed window			
Thermal Glazing	33 – 35	Thermal 6-12-6 mm in a PVC-U frame			
Secondary Glazing	40 – 45	Open-able 4-200-4 mm system with absorbent reveals			
Note that the descriptions provided are examples of the typical window types and are not specific					

recommendations for mitigation.

The R_w insulation factor is derived as an overall average noise reduction factor but can be calculated individually for every window based on its size and location on the façade. For the purposes of assessing internal noise levels, it will be conservatively assumed that all windows provide the lower end of the noise reduction range specified in Table 6-8.

On the basis of the modelled results above, and the assumption that Project operational noise levels are consistent for both day and night time periods, the following mitigation measures are recommended to be included in the design of the accommodation areas:

 Table 6-9 - Proposed Mitigation Measures for Inclusion in Design of Accommodation

 Areas

Receptor	Project Noise Level at Receptor	Exceedance of BS8233 Noise Limit for Sleeping	Recommended Window Specification for	Single Number Insulation Rating
	(dB(A))	(dB(A))	Accommodation Area	R _w (dB)
NSR6	65.9	35.9	Secondary Glazing	40 – 45
NSR7	64.6	34.6	Secondary Glazing	40 – 45
NSR8	60.5	30.5	Thermal Glazing	33 – 35
NSR9	52.2	22.2	Thermal Glazing	33 – 35
NSR10	53.6	23.6	Thermal Glazing	33 – 35

7 Conclusion

A noise impact assessment for the proposed Lamu Coal Power Station Project has been conducted to determine the significance and degree of impact at various types of receptor in the vicinity of the Project for both the construction and operational phases.

7.1 Construction Phase

Calculation of noise impacts due to construction equipment at the identified existing NSRs was calculated based on the methodology outlined in BS5228 [2]. The impact significance at these NSRs was then assessed based on the joint IEMA and IoA guidelines for noise and vibration impact assessment given in Table 3-3 [4].

It is expected that the construction noise threshold of 65 dB(A) will be met within a radius of approximately 50 - 75 m from the edge of the construction site.

Five NSRs were selected for assessment purposes. A moderate negative impact due to construction noise is expected at NSR3. It should be noted that despite the moderate impact predicted, the cumulative noise level at NSR3 is still below the 65 dB(A) construction noise threshold adopted for the assessment. At each of the other existing NSRs, a negligible increase in ambient noise level is expected and does not constitute a significant impact.

In conclusion, it is not expected that construction noise will pose significant impacts to any of the identified existing NSRs in the vicinity of the Project.

A variety of possible noise mitigation measures have been suggested, which if implemented effectively, could lead to reduction in impacts for the onsite receptors which are affected by construction noise (such as worker camps), and therefore should be implemented through HSE management plans.

7.2 Operational Noise Impact Assessment

In order to estimate the operational noise level, the internationally recognised noise modelling software SoundPLAN 7.3 has been utilised.

Potentially noisy items of plant at the Project facilities that include pumps, compressors, turbines, generators and air coolers (fans) were included in the noise model and an overall site noise contour map produced (See Appendix C).

7.2.1 Boundary Noise Levels

Under normal conditions, noise-producing equipment is predicted to be localised to the work areas within the boundary of the plant. The noise generated by the Project is expected to diminish towards the site boundary with maximum noise levels predicted to range from 45.3 dB(A) on the northern boundary to 55.5 dB(A) on the eastern boundary.

Based on the model results, the boundary noise levels are not anticipated to exceed the IFC daytime and night time guideline noise limit [1]. With the added mitigation created by trees,

grasses and various other naturally occurring screening measures, it is expected that boundary noise levels will be lower than those predicted in this assessment.

7.2.2 Existing Noise Sensitive Receptors

An initial screening of Project area and baseline data resulted in the selection of five existing NSRs for the purposes of this assessment. A detailed impact assessment was carried out for these NSRs by comparing Project operations noise (with the inclusion of baseline data) at the NSRs to the national standards and international guidelines as detailed in Section 3.

The assessment indicated that the Project operational noise levels are not expected to cause any exceedance of the daytime IFC noise limits, however the night time noise limit of 45 dB(A) is expected to be exceeded at all five of the existing NSRs.

It is noted that the baseline noise level at each NSR is included in the assessment and in the case of NSR 1, 2 and 4 is already in exceedance of the night time IFC noise standard [1].

7.2.3 New Noise Sensitive Receptors

The assessment indicated that all of the five new NSRs designed to accommodate workers at the Project site are predicted to experience noise levels that exceed the IFC night time noise limit of 45 dB(A) [1]. Similarly NSR 6, 7 and 8 are expected to experience daytime noise levels in exceedance of the relevant IFC limit. However, it should be acknowledged that these locations are all within the boundary of the Project site and it is thus expected that these exceedances are unavoidable.

A semi-quantitative assessment of the indoor noise levels at these receptors was carried out in order to determine the appropriate noise mitigation measures (with regards to design of windows in the accommodation area) to recommend so as to achieve compliance with the standards outlined in BS8233:2014 [3]. Of primary concern is compliance with the standard for adequate sleeping conditions within the accommodation buildings.

It was determined that secondary and thermal glazing should be incorporated in the design of the dormitory and worker camp accommodation buildings respectively (see Table 6-8 for details of window design).

Further mitigation measures should be investigated upon completion of the final design of the Project facilities and equipment in order to ensure compliance with IFC noise limits as well as WHO and BS8233 standards.

8 References

- 1. The International Finance Corporation (IFC) Environment, Health, and Safety (EHS) Guidelines: Noise Management
- 2. British Standards Institute (BSi), 2008, 'BS5228 Noise and Vibration Control on Construction and Open Sites'. BSi, London
- 3. British Standards Institute (BSi), 2014, 'BS8233 Guidance on Sound Insulation and Noise Reduction for Buildings'. BSi, London
- 4. Department for Environment, Food and Rural Affairs (DEFRA), 2005, 'Update of Noise Database for Prediction of Noise on Construction and Open Sites'. Norwich, United Kingdom
- Institute of Acoustics (IoA)/Institute of Environmental Management and Assessment (IEMA) Joint Working Party on Noise Impact Assessment (2002) draft Guidelines for Noise Impact Assessment
- 6. CONCAWE, Technical Memorandum on Noise from Construction Work (Other than percussive piling), Table 3, CNP064. (Accessed on 21/05/2015)

[http://www.epd.gov.hk/epd/english/environmentinhk/noise/guide_ref/tm_nonpp_4_3.ht ml]

- 7. International Organisation for Standardisation (ISO) ISO9613-2 'Acoustics Attenuation of Sound During Propagation Outdoors' (1993)
- 8. Sharland, Ian. Woods Practical Guide to Noise Control. Woods of Colchester Limited (1979)
- 9. United States Geological Survey, Global Data Explorer. (accessed on 08/05/2015)

[http://gdex.cr.usgs.gov/gdex/]

10. The Building Research Establishment (BRE), Digest 379 (1993).

9 Glossary

LAeq T: This is the continuous equivalent sound level. It is a widely used noise parameter that calculates a constant level of noise with the same energy content as the varying acoustic noise signal being measured. The letter "A" denotes that the A-weighting has been included and "eq" indicates that an equivalent level has been calculated. Hence, L_{Aeq} is the A-weighted equivalent continuous noise level. A-weighting is a filter incorporated into a sound level meter which when measuring noise replicates the sensitivity of human hearing.

LASN, T percentile levels: The level of A-weighted noise exceeded for N% of the measurement time. L_{AS90} , T is often used as a measure of background noise in many standards and guidelines. The L_{AS90} , T parameter would therefore represent the level exceeded for 90% of the measurement period, T. Likewise the L_{AS10} , T would indicate the level exceeded for 10% of the measurement period, T indicating the higher noise levels measured.

L_{Amax}: The maximum A-weighted sound pressure level occurring in a specified time period.

L_{A10}: The A-weighted sound pressure level that is exceeded 10% of the measurement period.

L_{A90}: The A-weighted sound pressure level that is exceeded 90% of the measurement period.

Octave Band Analysis: To identify frequency components of a sound, there is octave band analysis in which frequencies are segmented into proportionate widths (octave bands) and analysed. The sound pressure level of a single octave band is called the "octave band level", while that analysed for $1/_3$ of the octave band is called a " $1/_3$ octave band level". The frequency band in the octave band and $1/_3$ octave band is expressed as the centre frequency of that band. Using f_1 and f_2 as the upper and lower end frequencies of the band.

Sound Pressure Level (Lp): An acoustic measurement for the ratios of sound energy. Rated in decibels.

Sound Power Level (Lw): The Lw is a measure of the total airborne acoustic power generated by a noise source, expressed on a decibel scale referenced to a common standard (10-12 watts).

Decibel (dB): dB is a logarithmic unit of measurement that expresses the magnitude of a physical quantity (usually power or intensity) relative to a specified or implied reference level. Since it expresses a ratio of two quantities with the same unit, it is a dimensionless unit.

dB(A): The 'A' weighting network is very similar to the way in which the human ear responds to variations in sound pressure level as it places higher attenuation on the lower frequencies than on the mid to upper frequencies. It is applied to the decibel scale in order to account for how the human ear responds to changes in sound levels.

Appendix A: Sample Construction Noise Impact Assessment Tables

Sample Construction Assessment Tables

Construction Assessment at NSR 5

1. Earth Work Equipment

	Noise Emission			Adjusti	ments		Numbers .	Adjustr	nents	
Unit Type	Leq 10m	Recept or	Distan ce	Scree ning	Reflec tion	Res.	Duration	No. of	dB	ACTIVITY LAeq
	dB	distanc e (m)	Correc tion	dB	dB	Laeq dB	(% of total hours)	pla nt	Correc tion	dB
Backhoe Excavator	78.00	1 940	-45.76	5.00	-	27.2 4	100.00	1.0 0	-	27.24
Dozer	79.00	1 940	-45.76	5.00	-	28.2 4	100.00	1.0 0	-	28.24
Loader	68.00	1 940	-45.76	5.00	-	17.2 4	100.00	1.0 0	-	17.24
								SUE	BTOTAL	30.97

2. Transportation Equipment

	Noise Emission			Adjusti	ments		Numbers	Adjustr	ments	
Unit Type	Leq 10m	Recept or	Distan ce	Scree ning	Reflec tion	Res.	Duration	No. of	dB	ACTIVITY LAeq
	dB	distanc e (m)	Correc tion	dB	dB	Laeq dB	(% of total hours)	pla nt	Correc tion	dB
Autodumper (Large)	76.00	1 940	-45.76	5.00	-	25.2 4	100.00	1.0 0	-	25.24
Autodumper (Small)	78.00	1 940	-45.76	5.00	-	27.2 4	100.00	1.0 0	-	27.24
Water Tank Truck	76.00	1 940	-45.76	5.00	-	25.2 4	100.00	1.0 0	-	25.24
								SUE	BTOTAL	30.79

3. Concrete and mortar Equipment

	Noise Emission			Adjustr	nents		Numbers .	Adjustr	nents	
Unit Type	Leq 10m	Recept or	Distan ce	Scree ning	Reflec tion	Res.	Duration	No. of	dB	ACTIVITY LAeq
	dB	distanc e (m)	Correc tion	dB	dB	Laeq dB	(% of total hours)	pla nt	Correc tion	dB
Concrete Mixing Plant	76.40	1 940	-45.76	5.00	-	25.6 4	100.00	1.0 0	-	25.64
Concrete batching machine	-	1 940	-45.76	5.00	-	N/A	100.00	1.0 0	-	N/A
Material loader (a)	68.00	1 940	-45.76	5.00	-	17.2 4	100.00	1.0 0	-	17.24
Material loader (b)	68.00	1 940	-45.76	5.00	-	17.2 4	100.00	1.0 0	-	17.24
Concrete mixing transportation cart	76.00	1 940	-45.76	5.00	-	25.2 4	100.00	1.0 0	-	25.24
Concrete pump truck	77.00	1 940	-45.76	5.00	-	26.2 4	100.00	1.0 0	-	26.24
Concrete transport pump	67.00	1 940	-45.76	5.00	-	16.2 4	100.00	1.0 0	-	16.24
Mortar mixer	61.00	1 940	-45.76	5.00	-	10.2 4	100.00	1.0 0	-	10.24

4. Lifting Equipment

SUBTOTAL

31.08

	Noise Emission		Adjustments Numbers A				Adjustments			
Unit Type	Leq 10m	Recept or	Distan ce	Scree ning	Reflec tion	Res.	Duration	No. of	dB	ACTIVITY LAeq
	dB	distanc e (m)	Correc tion	dB	dB	Laeq dB	(% of total hours)	pla nt	Correc tion	dB
Track type crane (a)	67.00	1 940	-45.76	5.00	-	16.2 4	100.00	1.0 0	-	16.24
Track type crane (b)	67.00	1 940	-45.76	5.00	-	16.2 4	100.00	1.0 0	-	16.24
Truck crane	70.00	1 940	-45.76	5.00	-	19.2 4	100.00	1.0 0	-	19.24
								SUE	BTOTAL	22.26

5. Special Equipment

	NOISE Emission			Adjustr	nents		Numbers	Adjustr	nents	
Unit Type	Leq 10m	Recept or	Distan ce	Scree ning	Reflec tion	Res.	Duration	No. of	dB	ACTIVITY LAeq
	dB	distanc e (m)	Correc tion	dB	dB	Laeq dB	(% of total hours)	pla nt	Correc tion	dB
Piling machine	82.00	1 940	-45.76	5.00	-	31.2 4	100.00	1.0 0	-	31.24
Construction elevator	66.00	1 940	-45.76	5.00	-	15.2 4	100.00	1.0 0	-	15.24
Diesel generator	74.00	1 940	-45.76	5.00	-	23.2 4	100.00	1.0 0	-	23.24
Water purification equipment	-	1 940	-45.76	5.00	-	N/A	100.00	1.0 0	-	N/A
								SUE	BTOTAL	31.98

6. Other Equipment

Maina

	Emission			Adjustr	nents		Numbers	Adjustr	nents	
Unit Type	Leq 10m	Recept or	Distan ce	Scree ning	Reflec tion	Res.	Duration	No. of	dB	ACTIVITY LAeq
	dB	distanc e (m)	Correc tion	dB	dB	Laeq dB	(% of total hours)	pla nt	Correc tion	dB
Steel processing equipment	-	1 940	-45.76	5.00	-	N/A	100.00	1.0 0	-	N/A
Woodwork equipment	-	1 940	-45.76	5.00	-	N/A	100.00	1.0 0	-	N/A
electric slag pressure	73.00	1 940	-45.76	5.00	-	22.2	100.00	1.0 0	-	22.24
Flash butt-welding machine	73.00	1 940	-45.76	5.00	-	22.2 4	100.00	1.0 0	-	22.24
Electric welder	73.00	1 940	-45.76	5.00	-	22.2 4	100.00	1.0 0	-	22.24
Electric winch (a)	-	1 940	-45.76	5.00	-	N/A	100.00	1.0	-	N/A
Electric winch (b)	-	1 940	-45.76	5.00	-	N/A	100.00	1.0	-	N/A
Impact hammer	82.00	1 940	-45.76	5.00	-	31.2 4	100.00	1.0	-	31.24
Hand drill	75.50	1 940	-45.76	5.00	-	24.7	100.00	1.0	-	24.74
Sand-wheel grinder	75.00	1 940	-45.76	5.00	-	24.2	100.00	1.0	-	24.24
Angle abrader	75.00	1 940	-45.76	5.00	-	24.2	100.00	1.0	-	24.24
Bench grinder	80.00	1 940	-45.76	5.00	-	29.2 4	100.00	1.0	-	29.24
bender	-	1 940	-45.76	5.00	-	N/A	100.00	1.0	-	N/A
hammer)	82.00	1 940	-45.76	5.00	-	31.2 4	100.00	1.0	-	31.24
Submerged pump	62.00	1 940	-45.76	5.00	-	11.2	100.00	1.0	-	11.24
Sewage pump	68.00	1 940	-45.76	5.00	-	17.2 4	100.00	1.0 0	-	17.24

Kurrent Technologies Ltd Lamu Coal Power Plant

Vertical tamping machine	82.00	1 940	-45.76	5.00 -	31.2 4	100.00	1.0 0	-	31.24
Frog hammer	82.00	1 940	-45.76	5.00 -	31.2 4	100.00	1.0 0	-	31.24
-							SUBTOT	AL	38.79

Appendix B: Assumed Facilities Noise Equipment Log

Table A1: Project Facilities Equipment Noise Log

Equipment Tag	Equipment Description	LP (dB(A))	Data Re	ference
		@ 1 m	m N	m E
Continuous Pumps				
N_P_CW_1	Circulating water pump	85.0	712 295	9 767 609
N_P_CW_2	Circulating water pump	85.0	712 294	9 767 604
N_P_CW_3	Circulating water pump	85.0	712 292	9 767 598
N_P_CW_4	Circulating water pump	85.0	712 292	9 767 592
N_P_CW_5	Circulating water pump	85.0	712 292	9 767 586
N_P_CW_6	Circulating water pump	85.0	712 292	9 767 580
N_P_EM_1	Electric motor driven main pump	85.0	711 924	9 767 649
N_P_CP_1a	Condensate pump	85.0	711 984	9 767 650
N_P_CP_2a	Condensate pump	85.0	712 055	9 767 647
N_P_CP_3a	Condensate pump	85.0	712 125	9 767 643
N_P_TFW_1	Turbine driven feed water pump	85.0	711 978	9 767 659
N_P_TFW_2	Turbine driven feed water pump	85.0	711 978	9 767 648
N_P_TFW_3	Turbine driven feed water pump	85.0	712 048	9 767 655
N_P_TFW_4	Turbine driven feed water pump	85.0	712 048	9 767 645
N_P_TFW_5	Turbine driven feed water pump	85.0	712 118	9 767 652
N_P_TFW_6	Turbine driven feed water pump	85.0	712 118	9 767 641
N_P_TFW_1	Turbine driven feed water booster pump	85.0	711 990	9 767 662
N_P_TFW_2	Turbine driven feed water booster pump	85.0	711 989	9 767 656
N_P_TFW_3	Turbine driven feed water booster pump	85.0	712 060	9 767 659
N_P_TFW_4	Turbine driven feed water booster pump	85.0	712 060	9 767 652
N_P_TFW_5	Turbine driven feed water booster pump	85.0	712 130	9 767 655
N_P_TFW_6	Turbine driven feed water booster pump	85.0	712 129	9 767 650
N_P_CCCW_1	Closed cycle cooling water pump	85.0	711 994	9 767 662
N_P_CCCW_2	Closed cycle cooling water pump	85.0	711 994	9 767 656
N_P_CCCW_3	Closed cycle cooling water pump	85.0	712 064	9 767 658

Equipment Tag	Equipment Description	LP (dB(A))	Data Reference			
-4	P	@ 1 m	m N	m E		
N_P_CCCW_4	Closed cycle cooling water pump	85.0	712 064	9 767 652		
N_P_CCCW_5	Closed cycle cooling water pump	85.0	712 134	9 767 655		
N_P_CCCW_6	Closed cycle cooling water pump	85.0	712 133	9 767 649		
N_P_VP_1	Vacuum Pump	85.0	711 989	9 767 650		
N_P_VP_2	Vacuum Pump	85.0	711 993	9 767 650		
N_P_VP_3	Vacuum Pump	85.0	712 059	9 767 646		
N_P_VP_4	Vacuum Pump	85.0	712 064	9 767 646		
N_P_VP_5	Vacuum Pump	85.0	712 129	9 767 643		
N_P_VP_6	Vacuum Pump	85.0	712 133	9 767 643		
N_P_LOP_1	Lube Oil Transport Pump	85.0	711 984	9 767 645		
N_P_LOP_2	Lube Oil Transport Pump	85.0	712 055	9 767 642		
N_P_LOP_3	Lube Oil Transport Pump	85.0	712 125	9 767 639		
N_P_LDOS_1	LDO Supply Pump	85.0	712 217	9 767 782		
N_P_LDOS_2	LDO Supply Pump	85.0	712 220	9 767 782		
N_P_LDOS_3	LDO Supply Pump	85.0	712 223	9 767 781		
N_P_LDOS_4	LDO Supply Pump	85.0	712 226	9 767 781		
N_P_LDOU_1	LDO Unloading Pump	85.0	712 218	9 767 779		
N_P_LDOU_2	LDO Unloading Pump	85.0	712 224	9 767 779		
N_P_WWP_1	Waste Water Pump	85.0	712 214	9 767 918		
N_P_WWP_2	Waste Water Pump	85.0	712 218	9 767 918		
N_P_WWP_3	Waste Water Pump	85.0	712 223	9 767 918		
N_P_WWP_4	Waste Water Pump	85.0	712 227	9 767 917		
N_P_WWP_5	Waste Water Pump	85.0	712 231	9 767 917		
N_P_WWP_6	Waste Water Pump	85.0	712 235	9 767 917		
N_P_UFP_1	UF Produced Water Pump	85.0	712 196	9 767 671		
N_P_UFP_2	UF Produced Water Pump	85.0	712 196	9 767 664		
N_P_UFP_3	UF Produced Water Pump	85.0	712 195	9 767 657		
N_P_HPF_1	HP Feed water pump of SWRO	85.0	712 195	9 767 649		
N_P_HPF_2	HP Feed water pump of SWRO	85.0	712 195	9 767 642		

Equipment Tag	Equipment Description	LP (dB(A))	Data Re	ference
		@ 1 m	m N	m E
N_P_HPF_3	HP Feed water pump of SWRO	85.0	712 189	9 767 671
N_P_FP_1	Feed up Pump of RO	85.0	712 188	9 767 664
N_P_FP_2	Feed up Pump of RO	85.0	712 188	9 767 657
N_P_HPFP_1	HP Feed pump of RO	85.0	712 188	9 767 649
N_P_HPFP_2	HP Feed pump of RO	85.0	712 187	9 767 642
N_P_FIOX_1	Feed up pump of lon-exchanging system	85.0	712 181	9 767 671
N_P_FIOX_2	Feed up pump of lon-exchanging system	85.0	712 180	9 767 664
N_P_DWP_1	Demineralised Water Pump	85.0	712 180	9 767 657
N_P_DWP_2	Demineralised Water Pump	85.0	712 180	9 767 650
N_P_WPT_1	Washing pump for traveling screen	85.0	712 298	9 767 600
N_P_WPT_2	Washing pump for traveling screen	85.0	712 297	9 767 595
N_P_DP_1	Drainage pump	85.0	712 297	9 767 589
N_P_DP_2	Drainage pump	85.0	712 298	9 767 606
N_P_SWBP_1	Seawater booster pump	85.0	712 302	9 767 603
N_P_SWBP_2	Seawater booster pump	85.0	712 301	9 767 597
N_P_SWBP_3	Seawater booster pump	85.0	712 301	9 767 591
N_P_CWPM_1	Cooling water pump for CWP motors	85.0	712 296	9 767 583
N_P_CWPM_2	Cooling water pump for CWP motors	85.0	712 301	9 767 586
N_P_MWDM_1	Make-up water pump for D.M. Plant	85.0	712 209	9 767 872
N_P_MWDM_2	Make-up water pump for D.M. Plant	85.0	712 213	9 767 872
N_P_MWDM_3	Make-up water pump for D.M. Plant	85.0	712 216	9 767 872
N_P_MWDM_4	Make-up water pump for D.M. Plant	85.0	712 220	9 767 872
N_P_PWP_1	Potable water pump	85.0	712 211	9 767 868
N_P_PWP_2	Potable water pump	85.0	712 215	9 767 868
N_P_RWP_1	Reuse water pump	85.0	712 245	9 767 995
N_P_RWP_2	Reuse water pump	85.0	712 245	9 767 993
N_P_CWWP_1	Coal waste water pump	85.0	711 753	9 767 909
N_P_CWWP_1	Coal waste water pump	85.0	711 759	9 767 909
N_P_BDP_1	Blow Down Pump	85.0	712 156	9 768 152

Equipment Tag	Equipment Description	LP (dB(A))	Data Reference			
		@ 1 m	m N	m E		
N_P_BDP_2	Blow Down Pump	85.0	712 151	9 768 073		
N_P_BDP_3	Blow Down Pump	85.0	712 146	9 767 942		
N_P_BDP_4	Blow Down Pump	85.0	712 146	9 767 905		
N_P_BDP_5	Blow Down Pump	85.0	712 140	9 767 808		
N_P_BDP_6	Blow Down Pump	85.0	711 916	9 767 686		
Emergency Pumps						
E P FW 1	Motor driven variable speed feed water pump	85.0	711 985	9 767 662		
 E_P_FW_2	Motor driven variable speed feed water pump	85.0	712 055	9 767 659		
E_P_FW_3	Motor driven variable speed feed water pump	85.0	712 125	9 767 656		
E_P_CP_1b	Condensate pump	85.0	711 985	9 767 656		
E_P_CP_2b	Condensate pump	85.0	712 055	9 767 653		
E_P_CP_3b	Condensate pump	85.0	712 125	9 767 649		
E_P_LDOS_1	LDO Supply Pump	85.0	712 218	9 767 781		
E_P_LDOS_2	LDO Supply Pump	85.0	712 224	9 767 780		
E_P_DWP_1	Demineralised Water Pump	85.0	712 179	9 767 642		
E_P_WWP_1	Waste Water Pump	85.0	712 238	9 767 917		
E_P_WWP_2	Waste Water Pump	85.0	712 242	9 767 917		
E_P_RWP_1	Reuse water pump	85.0	712 245	9 767 990		
E_P_RWP_2	Reuse water pump	85.0	712 245	9 767 988		
E_P_EFF_1	Electric Driven firefighting pump	85.0	712 261	9 767 994		
E_P_DFF_1	Diesel Driven firefighting pump	85.0	712 261	9 767 988		
Other Point Sources						
N C RH 1	Ring-type hammer crusher	85.0	712 140	9 767 822		
N O BD 1	Bulldozer	85.0	711 913	9 768 025		
N O BD 2	Bulldozer	85.0	711 977	9 768 023		
N O BD 3	Bulldozer	85.0	712 044	9 768 018		
N O L 1	Loader	85.0	711 937	9 767 903		
N O L 2	Loader	85.0	712 014	9 767 900		

Equipment Tag	Equipment Description	LP (dB(A))	Data Reference			
-4-16-16-17-29		@1m	m N	m E		
N_H_VF_1	Vibrating Feeder	85.0	712 134	9 767 677		
N_H_VF_2	Vibrating Feeder	85.0	712 134	9 767 674		
N_O_SD_1	Striking Motor	85.0	711 924	9 767 676		
N_O_SD_2	Striking Motor	85.0	711 934	9 767 675		
N_O_SD_3	Striking Motor	85.0	711 944	9 767 675		
N_O_SD_4	Striking Motor	85.0	711 954	9 767 674		
N_O_SD_5	Striking Motor	85.0	711 965	9 767 674		
N_O_SD_6	Striking Motor	85.0	711 975	9 767 673		
N_O_SD_7	Striking Motor	85.0	711 984	9 767 673		
N_O_SD_8	Striking Motor	85.0	711 995	9 767 672		
N_O_SD_9	Striking Motor	85.0	712 005	9 767 672		
N_O_SD_10	Striking Motor	85.0	712 015	9 767 671		
N_O_SD_11	Striking Motor	85.0	712 025	9 767 671		
N O SD 12	Striking Motor	85.0	712 035	9 767 670		
N_O_SD_13	Striking Motor	85.0	712 045	9 767 670		
N_O_SD_14	Striking Motor	85.0	712 055	9 767 669		
N_O_SD_15	Striking Motor	85.0	712 065	9 767 669		
N_O_SD_16	Striking Motor	85.0	712 075	9 767 669		
N_O_SD_17	Striking Motor	85.0	712 084	9 767 668		
N_O_SD_18	Striking Motor	85.0	712 094	9 767 668		
N_O_SD_19	Striking Motor	85.0	712 104	9 767 667		
N_O_SD_20	Striking Motor	85.0	712 114	9 767 667		
N_F_RB_1	Roots Blower	85.0	712 222	9 767 900		
N_F_RB_2	Roots Blower	85.0	712 227	9 767 900		
N_F_RB_3	Roots Blower	85.0	712 232	9 767 900		
N_F_RB_4	Roots Blower	85.0	712 237	9 767 899		
N_T_LVDT_1	Low-voltage Dry-type Transformer (4.6)	85.0	712 186	9 767 617		
N_T_LVDT_2	Low-voltage Dry-type Transformer (4.6)	85.0	712 192	9 767 617		
N T LVDT 3	Low-voltage Dry-type Transformer (4.6)	85.0	712 199	9 767 617		

Equipment Tag	Equipment Description		Data Ref	ference
		@ 1 m	m N	m E
N_T_LVDT_4	Low-voltage Dry-type Transformer (4.6)	85.0	712 206	9 767 616
N_T_LVDT_5	Low-voltage Dry-type Transformer (4.4)	85.0	711 988	9 767 786
N_T_LVDT_6	Low-voltage Dry-type Transformer (4.4)	85.0	711 987	9 767 778
N_T_LVDT_7	Low-voltage Dry-type Transformer (4.4)	85.0	711 987	9 767 771
N_T_LVDT_8	Low-voltage Dry-type Transformer (4.4)	85.0	712 067	9 767 783
N_T_LVDT_9	Low-voltage Dry-type Transformer (4.4)	85.0	712 066	9 767 775
N_T_LVDT_10	Low-voltage Dry-type Transformer (4.4)	85.0	712 066	9 767 768
N_T_LVDT_11	Low-voltage Dry-type Transformer (4.5)	85.0	712 058	9 767 709
N_T_LVDT_12	Low-voltage Dry-type Transformer (4.5)	85.0	712 064	9 767 709
N_T_LVDT_13	Low-voltage Dry-type Transformer (4.5)	85.0	712 070	9 767 708
N_T_LVDT_14	Low-voltage Dry-type Transformer (4.5)	85.0	712 058	9 767 703
N_T_LVDT_15	Low-voltage Dry-type Transformer (4.5)	85.0	712 064	9 767 703
N_T_LVDT_16	Low-voltage Dry-type Transformer (4.5)	85.0	712 070	9 767 703
N_T_LVDT_17	Low-voltage Dry-type Transformer (4.5)	85.0	712 058	9 767 696
N_T_LVDT_18	Low-voltage Dry-type Transformer (4.5)	85.0	712 064	9 767 696
N_T_LVDT_19	Low-voltage Dry-type Transformer (4.5)	85.0	712 069	9 767 695
N_T_LVDT_20	Low-voltage Dry-type Transformer (4.5)	85.0	712 057	9 767 690
N_T_LVDT_21	Low-voltage Dry-type Transformer (4.5)	85.0	712 063	9 767 690
N_T_LVDT_22	Low-voltage Dry-type Transformer (4.5)	85.0	712 069	9 767 690
N_T_LVDT_23	Low-voltage Dry-type Transformer (4.5)	85.0	712 098	9 767 865
N_T_LVDT_24	Low-voltage Dry-type Transformer (4.5)	85.0	712 108	9 767 865
N_T_LVDT_25	Low-voltage Dry-type Transformer (4.5)	85.0	712 098	9 767 861
N_T_LVDT_26	Low-voltage Dry-type Transformer (4.5)	85.0	712 108	9 767 861
N_T_LVDT_27	Low-voltage Dry-type Transformer (4.7)	85.0	711 938	9 767 665
N_T_LVDT_28	Low-voltage Dry-type Transformer (4.7)	85.0	711 938	9 767 659
N_T_LVDT_29	Low-voltage Dry-type Transformer (4.7)	85.0	711 938	9 767 654
N_T_LVDT_30	Low-voltage Dry-type Transformer (4.8)	85.0	711 942	9 767 662
N_T_LVDT_31	Low-voltage Dry-type Transformer (4.8)	85.0	711 941	9 767 657
N_F_FBAH_1	Fluidising Air Blower for Ash Hopper	85.0	712 000	9 767 863

Equipment Tag	quipment Tag Equipment Description LP (dB(@ 1 m	LP (dB(A))	Data Reference	
		@ 1 m	m N	m E
N_F_FBAH_2	Fluidising Air Blower for Ash Hopper	85.0	712 000	9 767 861
N_F_FBAH_3	Fluidising Air Blower for Ash Hopper	85.0	712 000	9 767 860
N_F_FBAH_4	Fluidising Air Blower for Ash Hopper	85.0	712 000	9 767 859
N_F_FBAS_1	Fluidising Air Blower for Ash Silo	85.0	711 928	9 767 853
N_F_FBAS_2	Fluidising Air Blower for Ash Silo	85.0	711 933	9 767 853
N_F_FBAS_3	Fluidising Air Blower for Ash Silo	85.0	711 938	9 767 853
N_F_FBAS_4	Fluidising Air Blower for Ash Silo	85.0	711 942	9 767 853
Block Sources				
N H 1	Air Preheater	85.0	N/A	N/A
N C 1	Air Compressor	85.0	N/A	N/A
N C 2	Air Compressor	85.0	N/A	N/A
N C 3	Air Compressor	85.0	N/A	N/A
N C 4	Air Compressor	85.0	N/A	N/A
N_C_5	Air Compressor	85.0	N/A	N/A
N_C_6	Air Compressor	85.0	N/A	N/A
N_C_7	Air Compressor	85.0	N/A	N/A
1	Steam Turbine	85.0	N/A	N/A
N_ST_2	Steam Turbine	85.0	N/A	N/A
N_ST_3	Steam Turbine	85.0	N/A	N/A
N_FT_1	Feed water pump turbine	85.0	N/A	N/A
N_FT_2	Feed water pump turbine	85.0	N/A	N/A
N_FT_3	Feed water pump turbine	85.0	N/A	N/A
N_FT_4	Feed water pump turbine	85.0	N/A	N/A
N_FT_5	Feed water pump turbine	85.0	N/A	N/A
N_FT_6	Feed water pump turbine	85.0	N/A	N/A
N_M_1	Coal Mill	85.0	N/A	N/A
N_M_2	Coal Mill	85.0	N/A	N/A
N_M_3	Coal Mill	85.0	N/A	N/A
N_M_4	Coal Mill	85.0	N/A	N/A

Equipment Tag	Equipment Description	LP (dB(A))	Data Reference	
		@ 1 m	m N	m E
N_M_5	Coal Mill	85.0	N/A	N/A
N_M_6	Coal Mill	85.0	N/A	N/A
N_M_7	Coal Mill	85.0	N/A	N/A
N_M_8	Coal Mill	85.0	N/A	N/A
N_M_9	Coal Mill	85.0	N/A	N/A
N_M_10	Coal Mill	85.0	N/A	N/A
N_M_11	Coal Mill	85.0	N/A	N/A
N_M_12	Coal Mill	85.0	N/A	N/A
N_BH_1	Boiler Hall (Boiler)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Boiler)	85.0	N/A	N/A
N_BH_3	Boiler Hall (Boiler)	85.0	N/A	N/A
N_BH_1	Boiler Hall (P.A. Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (P.A. Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (P.A. Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (P.A. Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (P.A. Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (P.A. Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (F.D. Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (F.D. Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (F.D. Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (F.D. Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (F.D. Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (F.D. Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (Fluidising Air Blowers)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Fluidising Air Blowers)	85.0	N/A	N/A
N_BH_3	Boiler Hall (Fluidising Air Blowers)	85.0	N/A	N/A
N_BH_1	Boiler Hall (Fluidising Air Blowers)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Fluidising Air Blowers)	85.0	N/A	N/A
N BH 3	Boiler Hall (Fluidising Air Blowers)	85.0	N/A	N/A

Equipment Tag	Equipment Description	LP (dB(A)) @ 1 m	Data Ref	ference
-4-16-16-16-29	-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		m N	m E
N_BH_1	Boiler Hall (Sealing Air Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Sealing Air Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (Sealing Air Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (Sealing Air Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Sealing Air Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (Sealing Air Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (Scan Air Cooling Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Scan Air Cooling Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (Scan Air Cooling Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (Scan Air Cooling Fans)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Scan Air Cooling Fans)	85.0	N/A	N/A
N_BH_3	Boiler Hall (Scan Air Cooling Fans)	85.0	N/A	N/A
N_BH_1	Boiler Hall (Slag Crusher)	85.0	N/A	N/A
N_BH_2	Boiler Hall (Slag Crusher)	85.0	N/A	N/A
N_BH_3	Boiler Hall (Slag Crusher)	85.0	N/A	N/A
Area Sources		•		
N_IDF_1	I.D fans	85.0	N/A	N/A
N_IDF_2	I.D fans	85.0	N/A	N/A
N_IDF_3	I.D fans	85.0	N/A	N/A
N_IDF_4	I.D fans	85.0	N/A	N/A
 N_IDF_5	I.D fans	85.0	N/A	N/A
N IDF 6	I.D fans	85.0	N/A	N/A

Appendix C: Noise Contour Maps

₋evel (dB(A))		
<pre><= 49,0 <= 51,0 <= 53,0 <= 55,0 <= 57,0 <= 59,0 <= 61,0 <= 63,0 <= 65,0 <= 67,0 <= 69,0 <= 71,0 <= 73,0 <= 75,0 <= 77,0 <= 79,0 <= 81,0 <= 83,0 <= 85,0</pre>		
and symbols pint Source ock Source Yall		
ensitive Receptor 015-09-02		
cale 1:7612		
nC		
92_Rev01		

